Antiferromagnetic Multilayers and Superlattices

J. S. Jiang^a, S. G. E. te Velthuis^a, G. P. Felcher^a, S. D. Bader^a, D. Haskel^b, G. Srajer^b, D. R. Lee^b, Y. Choi^b, J. C. Lang^b, J. Meersschaut^c, C. L'abbé^c, R. E. Camley^d

a Materials Science Division, Argonne National Laboratory

^b Advanced Photon Source, Argonne National Laboratory

c Katholieke Universiteit Leuven, Belgium

d University of Colorado

Motivation

- A major challenge in nanomagnetism is to obtain an understanding of antiferromagnets (AF) that is as comprehensive as that of ferromagnets,
- The magnetic structure and switching characteristics of antiferromagnets have become seminal to our understanding of new spintronic concepts and devices,
- To discover rich phenomena due to geometric confinement and proximity effects.

Major Accomplishments

Surface spin flop transition in Fe/Cr

0.95 SSF 0.99

- Trace evolution of magnetic structure with polarized neutron reflectivity
- · Determine phase diagram of SSF transition

Phase diagram of ferrimagnetic Fe/Gd

- Characterize low-field nucleation and evolution of the surface-twisted state
- Quantify enhanced Gd ferromagnetic order due to interface exchange.(Y. Choi, et al., PRB 70, 134420 (2004))

Future Directions

Boundary effects on Cr SDW ordering

- Commensurability of boundary layer
- Interfacial roughness
- Spin frustration

· Quantum Critical Phenomena

Cr as a model system

- Relation between electronic structure & SDW-AF ordering
- Tuning the spin density wave
- Quantitative description of critical exponents

Implementation

- · Epitaxial Cr-based layered structures
- · Tune interfacial spin frustration

C. L'abbe, J. Meersschaut, W. Sturhahn, J. S. Jiang, T. S. Toellner, E. E. Alp, S. D. Bader, Phys. Rev. Lett. 93, 037201 (2004)

